Repeating Fractal Patterns with 4-Fold Symmetry
نویسندگان
چکیده
Previously we described an algorithm that can fill a region with an infinite sequence of randomly placed and progressively smaller shapes, producing a fractal pattern. If the algorithm is appropriately modified and the region is a fundamental region for one of the 17 “wallpaper” groups, one can obtain a fractal pattern with that symmetry group. This produces artistic patterns which have a pleasing combination of global symmetry and local randomness. In this paper we focus on such patterns with 4-fold symmetry, and we show several sample patterns.
منابع مشابه
Fractal Tilings Based on Dissections of Polyominoes
Polyominoes, shapes made up of squares connected edge-to-edge, provide a rich source of prototiles for edge-toedge fractal tilings. We give examples of fractal tilings with 2-fold and 4-fold rotational symmetry based on prototiles derived by dissecting polyominoes with 2-fold and 4-fold rotational symmetry, respectively. A systematic analysis is made of candidate prototiles based on lower-order...
متن کاملPatterns of Symmetry and Stability In Software Architectur..
Patterns of Symmetry and Stability In Software Architecture ............................... 1 1.1 Abstract .......................................................................................... 1 1.2 A Story of Beginnings......................................................................... 1 1.3 Introduction ..................................................................................
متن کاملFractal Tilings Based on Dissections of Polyhexes
Polyhexes, shapes made up of regular hexagons connected edge-to-edge, provide a rich source of prototiles for edge-to-edge fractal tilings. Numerous examples are given of fractal tilings with 2-fold and 3-fold rotational symmetry based on prototiles derived by dissecting polyhexes with 2-fold and 3-fold rotational symmetry, respectively. A systematic analysis is made of candidate prototiles bas...
متن کاملA Fractal Fundamental Domain with 12-fold Symmetry
Square triangle tilings are relevant models for quasicrystals. We introduce a new self-similar tile-substitution which yields the well-known nonperiodic square triangle tilings of Schlottmann. It is shown that the new tilings are locally derivable from Schlottmann’s, but not vice versa, and that they are mutually locally derivable with the undecorated square triangle tilings. Furthermore, the r...
متن کاملAnalysis of Herat embroidery patterns from the perspective of fractal geometry
Geometric shapes and motifs are a combination of the human spiritual mind which sees the existence of beautiful and paints a historical civilization through this vision. The geometric motifs are an expression of the rhythmic and balanced human beings possessions when the human being wants to imagine beyond the present and create a world full of love. The patterns/shapes are the basis of artwork...
متن کامل